

ΔΙΠΑΕ ΦΟΡΕΑΣ ΔΙΑΣΦΑΛΙΣΗΣ ΚΑΙ ΠΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΗΣ ΑΝΩΤΕΡΗΣ ΕΚΠΑΙΔΕΥΣΗΣ CYQAA THE CYPRUS AGENCY OF QUALITY ASSURANCE AND ACCREDITATION IN HIGHER EDUCATION

Course Title	Introduction to Bioinformatics
Course Code	ABS409
Course Type	Program specific elective
Level	BSc 1 st level
Year / Semester	4 th / 7 th Semester
Teacher's Name	Dr Panayiotis Paoullis / Dr Chrystalla Iosif
ECTS	6 Lectures / week 3 Laboratories / week 2
Course Objectives	 Bioinformatics is the application of computational tools for the analysis and interpretation of biological data. It is an interdisciplinary field, which harnesses computer science, mathematics, and biology. Bioinformatics is widely accepted as a major future direction of biomedical sciences, beneficial to students. This course's main purpose is to provide students with the theoretical background and working knowledge of the techniques employed in bioinformatics, including learning the R language, to solve biological problems. The aim of this course is to: Expose students to the multitude of the different bioinformatics software tools which are used to analyze large data sets. Students will become knowledgeable and acquire the basic skills to use the most appropriate and suitable tools to solve biological questions Students will become competent and work independently in applying bioinformatic pipelines to extract and analyze significant data and reach valid conclusions.
Learning Outcomes	By the end of this course students will be able to: Understand the importance of Bioinformatics in Applied Biomedical Science. Learn and apply the use of the R language in bioinformstics analysis Understand genomics/transcriptomics/ proteomics and become familiar with the concept of homologs, orthologs and paralogs. Become familiar with DNA and protein databases/information retrieval and learn about sequence alignment. Understand gene annotation, identification of introns and exons and how promoters regulate gene expression. Learn about Phylogenetic trees and how to perform phylogenetic analysis. Learn about microarrays and the different types of omics, the generated data and how to apply bioinformatic algorithms for their analysis.
Prerequisites	- Required -
Course Content	 Introduction to bioinformatics, the process of DNA replication, transcription, translation, and basic genomics /transcriptomics/proteomics and learn the terms homologs, orthologs and paralogs.

- Introduction and applications of the R computer language
- Introduction to biological databases, learning about DNA and protein databases and information retrieval. Compare sequences using Basic Local Alignment Search Tool (BLAST) and FASTA. Explore various biological Databases.
- Introduction to Sequence Alignment/ Distinguish between global and local alignment. Understand the basic statistics used in bioinformatics including scoring matrices, hidden Markov models (HMMs) and statistical significance of sequence alignment.
- Familiarize and perform pairwise sequence alignment and multiple sequence alignment.
- Gene and Promoter prediction/the importance of gene annotation, including detection of location of open reading frames and identification of introns and exons. Learn how promoters regulate gene expression and the different methods of promoters' identification, ab initio-based Algorithms, or expression profilebased methods.
- Phylogenetics: Define evolution and introduce the concept of phylogenetics. Introduction to Phylogenetic trees, their use and construction methods. Identify how to choose substitution models. Be able to perform phylogenetic analysis.
- Microarrays: Become familiar with the principles and applications of microarrays.
- Polymorphisms: Understand the basics of molecular evolution and the origins of polymorphisms. SNP detection methods.
- Genomics: Introduced to genome mapping, sequencing, assembly, annotation, functional genomic analysis and comparative genomic analysis. Gain knowledge of current sequencing technique
- Proteomics: Introduction to proteomics and the various proteomics techniques, including X-ray crystallography and nuclear magnetic resonance spectroscopy. Analysis of protein expression, posttranslational modifications, protein sorting and protein-protein interaction.
- Metabolomics: Understand the basis of metabolomics, methods used including mass spectrometry and NMR and data analysis.
- Predictive modelling: Understand the concept of predictive modelling and familiarized with the various predictive model algorithms including Random Forest, and LASSO, and cross validation methods, such as data randomization and LOOCV.
- Computational: Learn how to use various bioinformatics algorithms for performing different bioinformatics analysis using RStudio (R language), Python and Linux.

Theory:

	Molecular biology central dogma Introduction to bioinformatics biological
	databases Sequence Alignment Introduction to statistical methods Gene
	and Promoter prediction Phylogenetics Microarrays Polymorphism
	Genomics Proteomics Metabolomics Predictive modelling.
	<u>.</u>
	Computer exercises/assignments:
	As part of the course, the student will have the opportunity to apply their
	theoretical knowledge. Introduction and use of RStudio and Linux. Retrieve
	information from different sequencing databases. Use BLAST and FASTA
	Lise algorithms to perform pairwise and multiple sequencing alignment
	Multivariate analysis for "omics" data Analysis of microarrays results. Use
	of bioinformatics tools for gene prediction operon prediction promoter
	prediction and gene annotation. Perform PCA analysis use clustering
	algorithms perform differential expression analysis and functional
	enrichment analysis. Perform nathway analysis and generate nathway
	networks. Protein structure visualization comparison and classification
	Construct phylogenetic trees based on biological sequence data. Predictive
	modelling exercises
	Teaching methodology includes lectures on the theoretical background and
Teaching	computational exercises to better understand concepts of Bioinformatics
	Detailed lecture notes are presented. Students are also introduced to
	specific databases. During lectures discussions are carried out and
	students are encouraged to answer questions and draw their own
	conclusions. As part of developing students' skills students will use a
	variety of bioinformatics tools. Appropriate preparation and demonstration
	precede each computational exercise. Assessment of bioinformatics tools
	usage includes the evaluation of analysis results reports submitted by each
	student after each exercise.
Bibliography	(a) Textbooks:
	Practical Bioinformatics, 1st ed., Agostino, M., Garland Science,
	2013
	• Essential Bioinformatics, Xiong J., Cambridge university press,
	2006
	(b) References:
	• Bernstam, Elmer V., Jack W. Smith, and Todd R. Johnson. 2010.
	"What Is Biomedical Informatics?" Journal of Biomedical Informatics
	43 (1): 104–10.
	Bhardwaj, Kartik Krishna, Siddhant Banyal, and Deepak Kumar
	Sharma. 2019. "Artificial Intelligence Based Diagnostics,
	Therapeutics and Applications in Biomedical Engineering and
	Bioinformatics." In Internet of Things in Biomedical Engineering,
	161–87. Elsevier.
	• Liu, Yuan, Yamei Chen, and Leng Han. 2023. "Bioinformatics:
	Advancing Biomedical Discovery and Innovation in the Era of Big
	ן Data and Artificial Intelligence." The Innovation Medicine 1 (1):

	 100012. Luo, Jake, Min Wu, Deepika Gopukumar, and Yiqing Zhao. 2016. "Big Data Application in Biomedical Research and Health Care: A Literature Review." Biomedical Informatics Insights 8 (January): 1–10. Pereira, Rute, Jorge Oliveira, and Mário Sousa. 2020. "Bioinformatics and Computational Tools for Next-Generation Sequencing Analysis in Clinical Genetics." Journal of Clinical Medicine Research 9 (1).
Assessment	 Course Work 40% Mid-term Test 20% Computational Exercises/Lab reports 20% Final Exam 60% For student evaluation, the overall grade is determined by a written midterm exam (20%), a laboratory grade (20%) and a written final exam (60%). The mid-term exam is carried out between the 6th and 8th week, and it mainly includes short answer- questions and problem- solving questions and examines specific modules of the course. As far as the laboratory grade is concerned, it comprises of the evaluation of the laboratory reports (60% of the laboratory grade) submitted by the students after every experiment and a final laboratory examination (40% of the laboratory grade) which mainly includes short answer questions and problem-solving questions. In their laboratory reports, students are asked to describe the experimental procedure, to evaluate and analyse their results and to answer specific questions. The following criteria are taken into account when evaluating laboratory reports: (a) experimental data collection (30%), (b) data analysis (40%), and application of theory to draw conclusions (30%). The final exam of the course is carried out during the 14th-16th week of each semester and includes short answer questions, decision questions, and problem-solving questions regarding all course modules. The final assessment of the students is formative and summative and is assured to comply with the subject's expected learning outcomes and the quality of the course.
Language	Greek, English